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Abstract 

Spontaneous symmetry breaking affords an interesting probe of the phe- 

nomenon of Yacceleration radiation” in general relativistic quantum field 

theory and raises a peculiar paradox. Accelerated observers detect the 

presence of particles in the vacuum in a thermal distribution with a tem- 

perature proportional to the proper acceleration. Nonetheless, by ever 

increasing the temperature (acceleration) a broken symmetry cannot be 

restored without violating general covarisnce. How does the accelerated 

observer interpret this outcome dynamically? 
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I. Introduction 

Coordinate systems possessing horizons lead to certain ambiguities in the defi- 

nition of a quantum field theory [l, 21. One may consider a collection of observers 

comoving in such a coordinate system (tacked down to some fixed values of the 

spatial coordinates; such observers cannot all be freely falling; examples include 

the comoving observers in Schwarzschild, static desitter and Riidler coordinates). 

We attempt to define a Hamiltonian, HA, which propagates the Schroedinger wave 

functional of the quantum field theory in the accelerated observer’s coordinate time 

(we find this to be the simplest and most conceptual approach, though any con- 

ventional formulation of field theory will due; however, there are subtleties with 

path intgrals since the initial time and final time surfaces in these systems always 

overlap). However, the singularity in the coordinate system on the horizon trans- 

lates into ambiguities in the definition of the Hamiltonian density at the horizon 

and hence the Hamiltonian integral across the horizon. The ground state of the 

Riidler Hamiltonian is the “Unruh vacuum” and is seen to have lower energy than 

the Minkowski ground state. 

These ambiguities are related to the Cssimir effect. If one artificially severs 

continuity normal to some plane in flat space, i.e. neglect the 04 . 04 terms 

in the Hamiltonian on this surface, then the groundstate of the field theory will 

have different energy than the usual Miiowski vacuum. This owes to the singular 

field configurations (whose normal derivatives to the plane are nonexistent) which 

previously had zero amplitude of being found in the vacuum now becoming active 

and establishing a new groundstate. This is similar to the familiar Cssimir effect in 

which parallel plane conducting surfaces experience a net force due the expulsion 

of vacuum zero-point tluctuations which are inconsistent with conducting boundary 

conditions. In fact, this is effectively what happens in the singular coordinate system 

and leads to the Unruh vacuum being physically distinct from the Minkowski case. 

The formal resemblance of the Unruh matrix elements to those of an infinite plane 

conductor in Minkowski space with Dirichlet boundary conditions are striking. 

Rindler coordinates are defined in flat space and describe a comoving ensemble 
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of accelerated observers and are given by: 13, 4]: 

t = a-l enCsinh(an) (1.1) 

z = a-’ enEcosh(an) (z ’ 0) (1.2) 

571 = dL (1.3) 

where (-oo < I), E < co). We will presently restrict our attention to the “right hand 

wedge” corresponding to z > 0, though it is straightforward to extend the results 

to the double wedge case. Eq.(1.3) describes observers of 6xed [ accelerating with 

proper acceleration given on the t = u = 0 time slice by aemat = l/z, and elapsed 

proper time ne”(. The metric in Rindler coordinates is given by: 

ds’ = ez’~(dq2 - d<‘) - dz’; (1.4) 

Presently we will adopt a covariant functional Schroedinger description of the 

system as developed in ref.(5). We refer the reader to ref.(5) for the formal details. 

An equivalent approach might be to construct the appropriate Green’s functions [S] 

in the Unruh vacuum and extract local matrix elements from these. 

The true physical vacuum is always the usual Minkowski one, and operator 

matrix elements simply transform covariantly to the accelerating frame. Thus, 

since (: 4’ :) is zero (upon renormalization), it will always be measured to be zero 

by any observer. The Minkowski vacuum in Schroedinger picture is given by a 

gaussian wave-functional of the form: 

Q’M = exp { -; J dkdd-‘kl ( a(k,, k,) I2 ,/w} 

where we have represented the wave-functional in momentum space. For example, 

with a plane conducting wall at z = 0 and Dirichlet boundary conditions we would 

have the expansion: 

,#a(~) = /,- dk, y2L;- eirtL’LL a(k., ki) sin k,z 

(recall that in Schroedinger picture the fields are generalized coordinates and carry 

no time dependence, which is carried by the wavefunctional; we do not indicate 

the time dependence which is irrelevant presently; we are free to go to the Fourie- 
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coefficients as the coordinates of the system). The same field configuration can be 

represented in the right hand Rindler wedge in terms of massive d + 1 dimensional 

Rindlar modes 8s [5]: 

4(4 = / dkz ;12d;;$ P(k k,) eikL’=L h,(c) 

RF(s) = i (:sinhy)+ K,(a-‘en’&?%) (1.8) 

These modes diagonalize the Rindler Hamiltonian. We may then represent the 

Minkowski wavefunctional as a gaussian in the coefficients, P(k) (this is equivalent 

to a Bogoliubov transformation in the usual formalism and is given in ref.(s) as): 

-;/ dkzdd-‘kl j ,B(k, kl) ]* k,coth (1.9) 

This is not a groundstate of the Hamiltonian written in Rmdler coordinates since 

the width for each mode has an extra factor of coth($). Indeed, 9~ now appears 

as a state full containing a Bose gas of Rindler particles (these are particles as 

defined relative to the Rindler Hsmiltonian; the full double wedge Minkowski case 

is similar 151) with a universal temperature of T = &. 

The ground&ate of the Rmdler Hamiltonian is the “Unruh” vacuum and is given 

by: 

% = exp (-$ / dkdd-lh 1 P(k,h) 1’1 k. I} (1.10) 

Since this state is clearly different than the Mimkowski groundstate and since a given 

Hamiltonian can have only one groundstate, it follows that the Rindler Hamiltonian 

is different than the Miiowski Hamiltonian. This difference arises due to the 

singular structure of the Rmdler coordinates associated with the horizon. 

II. Operator Expectation Values 

If we compute local operator matrix elements, such as (4’) in the Unruh vacuum, we 

find that they are not covariant transforms of the same operator evaluated in the 
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Minkowski vacuum, but rather develop generally negative Yhermal” corrections. 

For example, we show that (Q) becomes -s in an ‘high temperature limit” where 

T is the local Hawking temperature given in terma of the local proper acceleration 

(at t = TJ = 0 we have T = &). Thus, it is the difference between the value of the 

operator in the Minkowski vacuum and that in the Unruh vacuum which appears as 

a positive thermal effect. 

Consider now the matrix element: 

(+ + ;Mb - 3,) = / dk,dp.dd-‘kldd-‘pl 2a-dn-d 

(sink,(z + i)sink.(z - i)> 

. (a(k,, k&r(p.,pl)) eiLL~“L+iPL’=L 

The expectation value is to be taken in the wavefunctional of eq.(??). 

(a(k.,kl)&,p.J) = / 04 ~~n(~)a(k,,kl)a(p,,pl)~.M(~) 

= 6(k. - p.) . 6d-‘(kl + pi) 

2(k:+k:+mZ)4 

(2.1) 

We have: 

(2.2) 

Making use of various integral identities, including the d-dimensional solid angle, 

we arrive at the result [8]: 

(+ + ;)+ - a,) = 274X+ 

c 

4 ) 2m 
+ &&nc) - (3’ K42mz)} (2.3) 

We note that the UV singularity of the operator $* resides in the Bessel functions 

with arguments mc. This result is, of course, equivalent to evaluating the Feynman 

propagator for spacelike interval with Dirichlet boundary conditions. We further 

note that in the Lorentz invariant vacuum without the presence of the wall at z = 0 

we obtain the famiiiar result: 

(d(z + i),$(= - ;,),.,*,= = 24X=9 

K ) 
2 * K+)} f’ 
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Clearly, the short distance singular part of eq.(2.3) is not influenced by the boundary 

conditions, and cl~~l be unambiguously subtracted in all coordinate systems (this 

corresponds to renormalizing the operator matrix element to be zero in the limit of 

zero acceleration). 

The formalism developed in ref.(S) is covsrisnt and we have verified explicitly 

as a check on the present calculation that if we reexpress the Minkowski vacuum, 

QM(I$) in terms of the Rindler modes and recalculate the (4’) we obtain the same 

result as in eq.(2.3) [8]. Hence, although the Miiowski vacuum appears to be full 

of particles, the local operator matrix elements are covariant and the acceleration 

radiation is in a sense fictitious. 

It is of interest however to evaluate the matrix element (4”) in the physically 

distinct Unruh vacuum. This is formally equivalent to the preceding analysis, but 

involves a nontrivial evaluation of a resulting Kontorovich-Lebedev transformation. 
Thi is discussed in ref.(S) We obtain the result: 

(++ $(z - ;,), =2-=%x { (&)’ K#nc) 

rr- - 1-d 

d/z: + z; + 22122 cash w 

1 

T 
-2 - 

I 
(2.5) 

0 2m 

.Kt+ 
W 

m z: + zi + 2zizr cash w 
aid 

) I + + d 

The second term on the right-hand side is nonsingular in the c -+ 0 limit and we 

thus are led to the result: 

(4(z)‘), =2-d7r-y ((+-)+Xy(me) 

(2.6) 
_ 2+md-l 

/ 

- 

0 
,2y,2 Q* K+(Q) 

where: 

Q = hmz dm. (2.7) 

Thus, the singular structure is identical to that obtained above for the Minkowski, 

an Dirichlet results. The finite corrections are negative definite and analogous to 
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those obtained for the Dirichlet csse. This is not unreasonable mathematically since 

the Rindler mode functions oscillate infinitely as they approach the horizon, while 

all normalization integrals have effectively a compact support. As such, we are 

implicitly forcing the field configuration of eq.(l.7) to vanish at the horizon by our 

normalization conventions and this in turn yields the result of eq.(2.6) not unlike 

the Dirichlet result. 

Eq.(2.6) yields a more striking result when we consider it in a specific case. Let 

us specialize to d = 3 corresponding to 3 + 1 dimensional spacetime. We further 

consider the limit of small z, the “high acceleration” limit. Throwing away the 

singular c-terms we find the leading behavior: 

(: d’(z)* :>, + -& /,- (1 + cosh;(rrl + &) = -g (2.8) 

where we define the local Hawking Temperature T(z) = & where the local proper 

acceleration is given by $ (we have used the integral eq.(??) to obtain thii latter 

result as well as the small argument limit of the Bessel function Kl(z)). 

This result is minus the usual thermal correction to the operator @ as is eas- 

ily verified by computing the expectation value with the thermal density matrix. 

It suggests that locally the Minkowski vacuum expectation value, which is zero 

upon subtraction, is “hot” by an amount g when compared to the Unruh re- 

sult. Nonetheless, there is no conflict with general covariance because the result in 

Minkowski space is invariant, i.e. zero transforms into zero. It would be incorrect 

to conclude that an accelerating observer measuring (q9) obtairu a thermal result 

of g. 
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